Site icon Renzo Mischianti

Ebyte LoRa E22 device for Arduino, esp32 or esp8266: library – 2

Spread the love

LoRa or Long Range wireless data telemetry is a technology pioneered by Semtech that operates at a lower frequency than NRF24L01 (433 MHz, 868 MHz, or 916 MHz against 2.4 GHz for the NRF24L01) but at thrice the distance (from 4000m to 10000m).

Ebyte LoRa E22 device for Arduino, esp32 or esp8266 Library

I created a library to manage EBYTE E22 based on the Semtech SX1268 series of LoRa devices, a very powerful, simple, and cheap device.

Ebyte LoRa E22 device for Arduino, esp32 or esp8266 3 devices module SMD

You can find here AliExpress (433MHz 5.5Km) - AliExpress (433MHz 10Km) - AliExpress (868MHz 915Mhz 5.5Km) - AliExpress (868MHz 915Mhz 10Km)

Library

You can find my library here.

And It’s available on Arduino IDE library manager.

EByte LoRa E22 E32 Arduino library manager

To download.

Click the DOWNLOADS button in the top right corner, rename the uncompressed folder LoRa_E22.

Check that the LoRa_E22 folder contains LoRa_E22.cpp and LoRa_E22.h.

Place the LoRa_E22 library folder your /libraries/ folder.

You may need to create the libraries subfolder if its your first library.

Restart the IDE.

Pinout

sx1278 sx1276 wireless lora uart module serial 3000m arduino 433 rf
Pin No.Pin itemPin directionPin application
1M0Input(weak pull-up)Work with M1 & decide the four operating modes.Floating is not allowed, can be ground.
2M1Input(weak pull-up)Work with M0 & decide the four operating modes.Floating is not allowed, can be ground.
3RXDInputTTL UART inputs, connects to external (MCU, PC) TXD outputpin. Can be configured as open-drain or pull-up input.
4TXDOutputTTL UART outputs, connects to external RXD (MCU, PC) inputpin. Can be configured as open-drain or push-pull output

5

AUX

Output
Per indicare lo stato di funzionamento del modulo e riattivare l’MCU esterno. Durante la procedura di inizializzazione di autocontrollo, il pin emette una bassa tensione. Può essere configurato come uscita open-drain o output push-pull (è consentito non metterlo a terra, ma se hai problemi, ad esempio ti si freeze il dispositivo è preferibile mettere una restistenza di pull-up da 4.7k o meglio collegarlo al dispositivo).
6VCCPower supply 2.3V~5.5V DC
7GNDGround

As you can see you can set various modes via M0 and M1 pins.

ModeM1M0Explanation
Normal00UART and wireless channel are open, transparent transmission is on (Supports configuration over air via special command)
WOR Mode01Can be defined as WOR transmitter and WOR receiver
Configuration mode10Users can access the register through the serial port to control the working state of the module
Deep sleep mode11Sleep mode

There are some pins that can be use in a static way, but If you connect It to the microcontroller and configure they in the library you gain in performance and you can control all mode via software, but we are going to explain better next.

Fully connected schema

As I already say It’s not important to connect all pin to the output of microcontroller, you can put M0 and M1 pins to HIGH or LOW to get desidered configuration, and if you don’t connect AUX the library set a reasonable delay to be sure that the operation is complete (If you have trouble like freeze device, you must put a pull-up 4.7k resistor or better connect to the device. ).

AUX pin

When transmitting data can be used to wake up external MCU and return HIGH on data transfer finish.

LoRa E32 AUX Pin on transmission

When receiving AUX going LOW and return HIGH when buffer is empty.

LoRa e32 AUX pin on reception

It’s also used for self checking to restore normal operation (on power-on and sleep/program mode).

LoRa e32 AUX pin on self-check

esp8266

esp8266 connection schema is more simple because It work at the same voltage of logical communications (3.3v).

LoRa E32 TTL 100 Wemos D1 fully connected

It’s important to add pull-up resistor (4,7Kohm) to get good stability.

E22esp8266
M0D7
M1D6
TXPIN D2 (PullUP 4,7KΩ)
RXPIN D3 (PullUP 4,7KΩ)
AUXPIN D5 (PullUP 4,7KΩ)
VCC5V (but work with less power in 3.3v)
GNDGND

esp32

Similar connection schema for esp32, but for RX and TX we use RX2 and TX2, because by default esp32 doesn’t have SoftwareSerial but have 3 Serial.

Ebyte LoRa E22 device esp32 dev kit v1 breadboard full connection
E22esp32
M0D21
M1D19
TXPIN RX2 (PullUP 4,7KΩ)
RXPIN TX3 (PullUP 4,7KΩ)
AUXPIN D18 (PullUP 4,7KΩ)
VCC5V (but work with less power in 3.3v)
GNDGND

Arduino

Arduino working voltage is 5v, so we need to add a voltage divider on RX pin M0 and M1 of LoRa module to prevent damage, you can get more information here Voltage divider: calculator and application.

You can use a 2Kohm resistor to GND and 1Kohm from signal than put together on RX.

LoRa E32 TTL 100 Arduino fully connected
M07 (voltage divider)
M16 (voltage divider)
TXPIN 2 (PullUP 4,7KΩ)
RXPIN 3 (PullUP 4,7KΩ & Voltage divider)
AUXPIN 5 (PullUP 4,7KΩ)
VCC5V
GNDGND

Arduino MKR WiFi 1010

Ebyte LoRa Exx Arduino MKR WiFi 1010 Fully connected breadboard
M02 (voltage divider)
M13 (voltage divider)
TXPIN 14 Tx (PullUP 4,7KΩ)
RXPIN 13 Rx (PullUP 4,7KΩ)
AUXPIN 1 (PullUP 4,7KΩ)
VCC5V
GNDGND

Constructor

I made a set of quite numerous constructors, because we can have more options and situations to manage.

		LoRa_E22(byte txE22pin, byte rxE22pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E22(byte txE22pin, byte rxE22pin, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E22(byte txE22pin, byte rxE22pin, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

First set of constructor are create to delegate the manage of Serial and other pins to the library.

A simple example is

#include "LoRa_E22.h"

LoRa_E32 e22ttl100(2, 3);  // e22 TX e22 RX
// LoRa_E32 e32ttl100(2, 3, 5, 6, 7);  // e22 TX e22 RX

We can use directly a SoftwareSerial with another constructor

		LoRa_E22(HardwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E22(HardwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E22(HardwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

The example upper with this constructor can be do like so.

#include <SoftwareSerial.h>
#include "LoRa_E22.h"

SoftwareSerial mySerial(2, 3); // e22 TX e22 RX
LoRa_E22 e22ttl100(&mySerial);
// LoRa_E22 e22ttl100(&mySerial, 5, 7, 6);

The last set of constructor is to permit to use an HardwareSerial instead of SoftwareSerial.

		LoRa_E22(SoftwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E22(SoftwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E22(SoftwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

For esp32 you have 3 additional constructor to permit to manage pins for HardWare serial

			LoRa_E22(byte txE22pin, byte rxE22pin, HardwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600, uint32_t serialConfig = SERIAL_8N1);
			LoRa_E22(byte txE22pin, byte rxE22pin, HardwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600, uint32_t serialConfig = SERIAL_8N1);
			LoRa_E22(byte txE22pin, byte rxE22pin, HardwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600, uint32_t serialConfig = SERIAL_8N1);

Begin

The begin command is used to startup Serial and pins in input and output mode.

void begin();

in execution is

	// Startup all pins and UART
	e22ttl100.begin();

Configuration and information method

There a set of methods for manage configuration and get information of the device.

		ResponseStructContainer getConfiguration();
		ResponseStatus setConfiguration(Configuration configuration, PROGRAM_COMMAND saveType = WRITE_CFG_PWR_DWN_LOSE);

		ResponseStructContainer getModuleInformation();
        void printParameters(struct Configuration configuration);
        ResponseStatus resetModule();

Response container

To simplify the manage of response I create a set of container, for me very usefully to manage errors and return generic data.

ResponseStatus

This is a status container and have 2 simple entry point, with this you can get the status code and the description of status code

	Serial.println(c.getResponseDescription()); // Description of code
	Serial.println(c.code); // 1 if Success

The code are

  SUCCESS = 1,
  ERR_E22_UNKNOWN,
  ERR_E22_NOT_SUPPORT,
  ERR_E22_NOT_IMPLEMENT,
  ERR_E22_NOT_INITIAL,
  ERR_E22_INVALID_PARAM,
  ERR_E22_DATA_SIZE_NOT_MATCH,
  ERR_E22_BUF_TOO_SMALL,
  ERR_E22_TIMEOUT,
  ERR_E22_HARDWARE,
  ERR_E22_HEAD_NOT_RECOGNIZED

ResponseContainer

This container is created to manage String response and have 2 entry point.

data with the string returned from message and status an instance of RepsonseStatus.

		ResponseContainer rs = e22ttl.receiveMessage();
		String message = rs.data;

		Serial.println(rs.status.getResponseDescription());
		Serial.println(message);

but this command go to read all the data in the buffer, if you receive 3 message you are going to read all 3 message in one time, my simple solution is to use an end character to send at the end of message, to default I use \0 (null character)

		ResponseContainer rs = e22ttl.receiveMessageUntil();
                // You can specify a custom delimiter also
		// ResponseContainer rs = e22ttl.receiveMessageUntil('|');

		String message = rs.data;

		Serial.println(rs.status.getResponseDescription());
		Serial.println(message);

This version of device support RSSI also, to read that parameter (if you specify in the configuration that you want send also that), you can use

	        ResponseContainer rc = e22ttl.receiveMessageRSSI();
		String message = rs.data;

		Serial.println(rs.status.getResponseDescription());
		Serial.println(message);
                Serial.print("RSSI: "); Serial.println(rc.rssi, DEC);

ResponseStructContainer

This is the more “complex” container, I use this to manage structure, It has the same entry point of ResponseContainer but data is a void pointer to manage complex structure.

	ResponseStructContainer c;
	c = e22ttl100.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);
        c.close();

If you receive a structure message with RSSI you can use

		ResponseStructContainer rsc = e22ttl.receiveMessageRSSI(sizeof(Message));
		Serial.println(rsc.status.getResponseDescription());
		struct Message message = *(Message*) rsc.data;
		Serial.println(message.type);
		Serial.println(message.message);
		Serial.println(*(float*)(message.temperature));
		Serial.print("RSSI: "); Serial.println(rsc.rssi, DEC);
                rsc.close();

Every time you use a ResponseStructContainer you must close It with close()

getConfiguration and setConfiguration

The first method is getConfiguration, you can use It to retrieve all data stored on the device.

		ResponseStructContainer getConfiguration();

Here an usage example.

	ResponseStructContainer c;
	c = e32ttl100.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);
        Serial.println(configuration.SPED.getUARTBaudRate());
         c.close();

Structure of configuration have all data of settings, and I add a series of function to get all description of single data.

	configuration.ADDL = 0x03; // First part of address
	configuration.ADDH = 0x00; // Second part
	configuration.NETID = 0x00; // NETID used for repeater function

	configuration.CHAN = 23; // Communication channel

	configuration.SPED.uartBaudRate = UART_BPS_9600; // Serial baud rate
	configuration.SPED.airDataRate = AIR_DATA_RATE_010_24; // Air baud rate
	configuration.SPED.uartParity = MODE_00_8N1; // Parity bit

	configuration.OPTION.subPacketSetting = SPS_240_00; // Packet size
	configuration.OPTION.RSSIAmbientNoise = RSSI_AMBIENT_NOISE_DISABLED; // Need to send special command
	configuration.OPTION.transmissionPower = POWER_22; // Device power

	configuration.TRANSMISSION_MODE.enableRSSI = RSSI_DISABLED; // Enable RSSI info
	configuration.TRANSMISSION_MODE.fixedTransmission = FT_TRANSPARENT_TRANSMISSION; // Transmission type
	configuration.TRANSMISSION_MODE.enableRepeater = REPEATER_DISABLED; // Enable repeater mode
	configuration.TRANSMISSION_MODE.enableLBT = LBT_DISABLED; // Check interference
	configuration.TRANSMISSION_MODE.WORTransceiverControl = WOR_RECEIVER; // Enable WOR mode
	configuration.TRANSMISSION_MODE.WORPeriod = WOR_2000_011; // WOR timing

You have the equivalent function for all attribute to get all description:

	DEBUG_PRINT(F("HEAD : "));  DEBUG_PRINT(configuration.COMMAND, HEX);DEBUG_PRINT(" ");DEBUG_PRINT(configuration.STARTING_ADDRESS, HEX);DEBUG_PRINT(" ");DEBUG_PRINTLN(configuration.LENGHT, HEX);
	DEBUG_PRINTLN(F(" "));
	DEBUG_PRINT(F("AddH : "));  DEBUG_PRINTLN(configuration.ADDH, HEX);
	DEBUG_PRINT(F("AddL : "));  DEBUG_PRINTLN(configuration.ADDL, HEX);
	DEBUG_PRINT(F("NetID : "));  DEBUG_PRINTLN(configuration.NETID, HEX);
	DEBUG_PRINTLN(F(" "));
	DEBUG_PRINT(F("Chan : "));  DEBUG_PRINT(configuration.CHAN, DEC); DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.getChannelDescription());
	DEBUG_PRINTLN(F(" "));
	DEBUG_PRINT(F("SpeedParityBit     : "));  DEBUG_PRINT(configuration.SPED.uartParity, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.SPED.getUARTParityDescription());
	DEBUG_PRINT(F("SpeedUARTDatte     : "));  DEBUG_PRINT(configuration.SPED.uartBaudRate, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.SPED.getUARTBaudRateDescription());
	DEBUG_PRINT(F("SpeedAirDataRate   : "));  DEBUG_PRINT(configuration.SPED.airDataRate, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.SPED.getAirDataRateDescription());
	DEBUG_PRINTLN(F(" "));
	DEBUG_PRINT(F("OptionSubPacketSett: "));  DEBUG_PRINT(configuration.OPTION.subPacketSetting, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.OPTION.getSubPacketSetting());
	DEBUG_PRINT(F("OptionTranPower    : "));  DEBUG_PRINT(configuration.OPTION.transmissionPower, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.OPTION.getTransmissionPowerDescription());
	DEBUG_PRINT(F("OptionRSSIAmbientNo: "));  DEBUG_PRINT(configuration.OPTION.RSSIAmbientNoise, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.OPTION.getRSSIAmbientNoiseEnable());
	DEBUG_PRINTLN(F(" "));
	DEBUG_PRINT(F("TransModeWORPeriod : "));  DEBUG_PRINT(configuration.TRANSMISSION_MODE.WORPeriod, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.TRANSMISSION_MODE.getWORPeriodByParamsDescription());
	DEBUG_PRINT(F("TransModeTransContr: "));  DEBUG_PRINT(configuration.TRANSMISSION_MODE.WORTransceiverControl, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.TRANSMISSION_MODE.getWORTransceiverControlDescription());
	DEBUG_PRINT(F("TransModeEnableLBT : "));  DEBUG_PRINT(configuration.TRANSMISSION_MODE.enableLBT, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.TRANSMISSION_MODE.getLBTEnableByteDescription());
	DEBUG_PRINT(F("TransModeEnableRSSI: "));  DEBUG_PRINT(configuration.TRANSMISSION_MODE.enableRSSI, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.TRANSMISSION_MODE.getRSSIEnableByteDescription());
	DEBUG_PRINT(F("TransModeEnabRepeat: "));  DEBUG_PRINT(configuration.TRANSMISSION_MODE.enableRepeater, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.TRANSMISSION_MODE.getRepeaterModeEnableByteDescription());
	DEBUG_PRINT(F("TransModeFixedTrans: "));  DEBUG_PRINT(configuration.TRANSMISSION_MODE.fixedTransmission, BIN);DEBUG_PRINT(" -> "); DEBUG_PRINTLN(configuration.TRANSMISSION_MODE.getFixedTransmissionDescription());

In the same way, setConfiguration wants a configuration structure, so I think the better way to manage configuration is to retrieve the current one, apply the only change you need and set It again.

		ResponseStatus setConfiguration(Configuration configuration, PROGRAM_COMMAND saveType = WRITE_CFG_PWR_DWN_LOSE);

configuration is the structure previously shown, saveType permit to you to choose if the change becomes permanently of only for the current session.

	ResponseStructContainer c;
	c = e32ttl100.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);

	printParameters(configuration);
	configuration.ADDL = 0x03; // First part of address
	configuration.ADDH = 0x00; // Second part
	configuration.NETID = 0x00; // NETID used for repeater function

	configuration.CHAN = 23; // Communication channel

	configuration.SPED.uartBaudRate = UART_BPS_9600; // Serial baud rate
	configuration.SPED.airDataRate = AIR_DATA_RATE_010_24; // Air baud rate
	configuration.SPED.uartParity = MODE_00_8N1; // Parity bit

	configuration.OPTION.subPacketSetting = SPS_240_00; // Packet size
	configuration.OPTION.RSSIAmbientNoise = RSSI_AMBIENT_NOISE_DISABLED; // Need to send special command
	configuration.OPTION.transmissionPower = POWER_22; // Device power

	configuration.TRANSMISSION_MODE.enableRSSI = RSSI_DISABLED; // Enable RSSI info
	configuration.TRANSMISSION_MODE.fixedTransmission = FT_TRANSPARENT_TRANSMISSION; // Transmission type
	configuration.TRANSMISSION_MODE.enableRepeater = REPEATER_DISABLED; // Enable repeater mode
	configuration.TRANSMISSION_MODE.enableLBT = LBT_DISABLED; // Check interference
	configuration.TRANSMISSION_MODE.WORTransceiverControl = WOR_RECEIVER; // Enable WOR mode
	configuration.TRANSMISSION_MODE.WORPeriod = WOR_2000_011; // WOR timing

	// Set configuration changed and set to not hold the configuration
	ResponseStatus rs = e32ttl100.setConfiguration(configuration, WRITE_CFG_PWR_DWN_LOSE);
	Serial.println(rs.getResponseDescription());
	Serial.println(rs.code);
	printParameters(configuration);
        c.close()

The parameter are all managed as constant:

Basic configuration option

NameDescriptionAddress
ADDHHigh address byte of module (the default 00H)00H
ADDLLow address byte of module (the default 00H)01H
SPEDInformation about data rate parity bit and Air data rate02H
OPTION Type of transmission, packet size, allow special message 03H
CHANCommunication channel(410M + CHAN*1M), default 17H (433MHz), valid only for 433MHz device check below to check the correct frequency of your device04H
TRANSMISSION_MODEA lot of parameter that specify the transmission modality06H
CRYPTEncryption to avoid interception07H

SPED detail

UART Parity bit: UART mode can be different between communication parties

SPED detail

UART Parity bit: UART mode can be different between communication parties

UART parity bitConstant value
8N1 (default)MODE_00_8N1
8O1MODE_01_8O1
8E1MODE_10_8E1
8N1 (equal to 00)MODE_11_8N1

UART baud rate: UART baud rate can be different between communication parties, The UART baud rate has nothing to do with wireless transmission parameters & won’t affect the wireless transmit / receive features.

TTL UART baud rate(bps)Constant value
1200UART_BPS_1200
2400UART_BPS_2400
4800UART_BPS_4800
9600 (default)UART_BPS_9600
19200UART_BPS_19200
38400UART_BPS_38400
57600UART_BPS_57600
115200UART_BPS_115200

Air data rate: The lower the air data rate, the longer the transmitting distance, better anti- interference performance and longer transmitting time, The air data rate must keep the same for both communication parties.

Air data rate(bps) Constant value
0.3kAIR_DATA_RATE_000_03
1.2kAIR_DATA_RATE_001_12
2.4k (default)AIR_DATA_RATE_010_24
4.8kAIR_DATA_RATE_011_48
9.6kAIR_DATA_RATE_100_96
19.2kAIR_DATA_RATE_101_192
38.4kAIR_DATA_RATE_110_384
62.5kAIR_DATA_RATE_111_625

OPTION detail

Sub packet setting

This is the max length of the packet.

When the data is smaller than the sub packet length, the serial output of the receiving end is an uninterrupted continuous output. When the data is larger than the sub packet length, the receiving end serial port will output the sub packet.

Packet size Constant value
240bytes (default)SPS_240_00
128bytesSPS_128_01
64bytesSPS_064_10
32bytesSPS_032_11

RSSI Ambient noise enable

This command can enable/disable the management type of RSSI, It’s important to manage the remote configuration, pay attention isn’t the RSSI parameter in the message.

When enabled, the C0 C1 C2 C3 command can be sent in the transmitting mode or WOR transmitting mode to read the register. Register 0x00: Current ambient noise rssi Register 0X01: rssi when the data was received last time.

RSSI Ambient noise enable Constant value
EnableRSSI_AMBIENT_NOISE_ENABLED
Disable (default)RSSI_AMBIENT_NOISE_DISABLED

Transmission power

You can change this set of constant by apply a define like so:

#define E22_22 // default value without set 

Applicable for E22 with 22dBm as max power.
Low power transmission is not recommended due to its low power supply efficiency.

Transmission power (approximation) Constant value
22dBm (default)POWER_22
17dBmPOWER_17
13dBmPOWER_13
10dBmPOWER_10

Applicable for E22 with 30dBm as max power.
Low power transmission is not recommended due to its low power supply efficiency.

#define E22_30
Transmission power (approximation) Constant value
30dBm (default)POWER_30
27dBmPOWER_27
24dBmPOWER_24
21dBmPOWER_21

You can configure Channel frequency also with this define:

// One of 
#define FREQUENCY_433 
#define FREQUENCY_170
#define FREQUENCY_470
#define FREQUENCY_868
#define FREQUENCY_915

TRANSMISSION_MODE Detail

Enable RSSI

When enabled, the module receives wireless data and it will follow an RSSI strength byte after output via the serial port TXD

Enable RSSI Constant value
EnableRSSI_ENABLED
Disable (default)RSSI_DISABLED

Transmission type

Transmission mode: in fixed transmission mode, the first three bytes of each user’s data frame can be used as high/low address and channel. The module changes its address and channel when transmit. And it will revert to original setting after complete the process.

Fixed transmission enabling bit Constant value
Fixed transmission modeFT_FIXED_TRANSMISSION
Transparent transmission mode (default)FT_TRANSPARENT_TRANSMISSION

Enable repeater function

Enable repeaterConstant value
Enable repeaterREPEATER_ENABLED
Disable repeater (default)REPEATER_DISABLED

Monitor data before transmission

When enabled, wireless data will be monitored before it is transmitted, which can avoid interference to a certain extent, but may cause data delay.

LBT enable byte Constant value
EnableLBT_ENABLED
Disable (default)LBT_DISABLED

WOR

WOR transmitter: the module receiving and transmitting functions are turned on, and a wake-up code is added when transmitting data. Receiving is turned on.

WOR receiver: the module is unable to transmit data and works in WOR monitoring mode. The monitoring period is as follows (WOR cycle), which can save a lot of power.

WOR Constant value
WOR transmitterWOR_TRANSMITTER
WOR receiver (default)WOR_RECEIVER

WOR cycle

If WOR is transmitting: after the WOR receiver receives the wireless data and outputs it through the serial port, it will wait for 1000ms before entering the WOR again. Users can input the serial port data and return it via the wireless during this period. Each serial byte will be refreshed for 1000ms. Users must transmit the first byte within 1000ms.

Wireless wake-up time Constant value
500msWAKE_UP_500
1000msWAKE_UP_1000
1500msWAKE_UP_1500
2000ms (default)WAKE_UP_2000
2500msWAKE_UP_2500
3000msWAKE_UP_3000
3500msWAKE_UP_3500
4000msWAKE_UP_4000

Check buffer

First we must introduce a simple but usefully method to check if something is in the receiving buffer

int available();

It’s simply return how many bytes you have in the current stream.

Send receive messages

Normal transmission mode

Normal/Transparent transmission mode is used to send messages to all device with same address and channel.

LoRa E32 transmitting scenarios, lines are channels

There are a lot of method to send/receive message, we are going to explain in detail:

        ResponseStatus sendMessage(const String message);
        ResponseContainer receiveMessage();

First method is sendMessage and is used to send a String to a device in Normal mode.

	ResponseStatus rs = e22ttl.sendMessage("Prova");
	Serial.println(rs.getResponseDescription());

The other device simply do on the loop

       if (e32ttl.available()  > 1){
		ResponseContainer rs = e32ttl.receiveMessage();
		String message = rs.data; // First ever get the data
		Serial.println(rs.status.getResponseDescription());
		Serial.println(message);
	}

Pay attention if you receive multiple message in the buffer and you don’t want read all in one time you must use ResponseContainer rs = e32ttl.receiveMessageUntil(); with a delimiter put on the end of sending message.

If you enabled the RSSI you must use receiveMessageRSSI.

Manage structure

If you want send a complex structure you can use this method

        ResponseStatus sendMessage(const void *message, const uint8_t size);
        ResponseStructContainer receiveMessage(const uint8_t size);

It’s used to send structure, for example:

	struct Messaggione {
		char type[5];
		char message[8];
		bool mitico;
	};
        struct Messaggione messaggione = {"TEMP", "Peple", true};
        ResponseStatus rs = e22ttl.sendMessage(&messaggione, sizeof(Messaggione));
	Serial.println(rs.getResponseDescription());

and the other side you can receive the message so

		ResponseStructContainer rsc = e22ttl.receiveMessage(sizeof(Messaggione));
		struct Messaggione messaggione = *(Messaggione*) rsc.data;
		Serial.println(messaggione.message);
		Serial.println(messaggione.mitico);
                rsc.close();

If you enabled the RSSI you must use receiveMessageRSSI.

Read partial structure

If you want to read the first part of the message to manage more types of structure you can use this method.

ResponseContainer receiveInitialMessage(const uint8_t size);

I create It to receive a string with type or other to identify the strucuture to load.

		struct Messaggione { // Partial structure without type
			char message[8];
			bool mitico;
		};

		char type[5]; // first part of structure
		ResponseContainer rs = e32ttl.receiveInitialMessage(sizeof(type));
                // Put string in a char array (not needed)
		memcpy ( type, rs.data.c_str(), sizeof(type) );

		Serial.println("READ TYPE: ");
		Serial.println(rs.status.getResponseDescription());
		Serial.println(type);

                // Read the rest of structure
		ResponseStructContainer rsc = e32ttl.receiveMessage(sizeof(Messaggione));
		struct Messaggione messaggione = *(Messaggione*) rsc.data;
                rsc.close();

Fixed mode instead of normal mode

At same manner I create a set of method to use with fixed transmission

Fixed transmission

You need to change only the sending method, because the destination device don’t receive the preamble with Address and Channel quando settato il fixed mode.

So for String message you have

        ResponseStatus sendFixedMessage(byte ADDH, byte ADDL, byte CHAN, const String message);
        ResponseStatus sendBroadcastFixedMessage(byte CHAN, const String message);

and for structure you have

        ResponseStatus sendFixedMessage(byte ADDH, byte ADDL, byte CHAN, const void *message, const uint8_t size);
        ResponseStatus sendBroadcastFixedMessage(byte CHAN, const void *message, const uint8_t size );

Here a simple example

	ResponseStatus rs = e22ttl.sendFixedMessage(0, 0, 0x17, &messaggione, sizeof(Messaggione));
//	ResponseStatus rs = e22ttl.sendFixedMessage(0, 0, 0x17, "Ciao");

Fixed transmission have more scenarios

LoRa E32 transmitting scenarios, lines are channels

If you send to a specific device (second scenarios Fixed transmission) you must add ADDL, ADDH and CHAN to identify It directly.

ResponseStatus rs = e22ttl.sendFixedMessage(2, 2, 0x17, "Message to a device");

If you want send a message to all device in a specified Channel you can use this method.

ResponseStatus rs = e22ttl.sendBroadcastFixedMessage(0x17, "Message to a devices of a channel");

If you want receive all broadcast message in the network you must set your ADDH and ADDL with BROADCAST_ADDRESS.

        ResponseStructContainer c;
	c = e22ttl100.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);

	printParameters(configuration);
	configuration.ADDL = BROADCAST_ADDRESS;
	configuration.ADDH = BROADCAST_ADDRESS;

	// Set configuration changed and set to not hold the configuration
	ResponseStatus rs = e32ttl100.setConfiguration(configuration, WRITE_CFG_PWR_DWN_LOSE);
	Serial.println(rs.getResponseDescription());
	Serial.println(rs.code);
	printParameters(configuration);
        c.close();

Wireless configuration

This device supports wireless configuration with special commands but seems not to work, I ask to EBYTE but no response was received.

I implement a command that send the packet in the correct way (tested with logic analyzer) but seems not to work.

By the way, first you muset activate RSSI noise environment, than you can use the command like so:

  	  Configuration configuration;

	configuration.ADDL = 0x13;
	configuration.ADDH = 0x13;
	configuration.NETID = 0x00;

	configuration.CHAN = 23;

	configuration.SPED.uartBaudRate = UART_BPS_9600;
	configuration.SPED.airDataRate = AIR_DATA_RATE_010_24;
	configuration.SPED.uartParity = MODE_00_8N1;

	configuration.OPTION.subPacketSetting = SPS_240_00;
	configuration.OPTION.RSSIAmbientNoise = RSSI_AMBIENT_NOISE_DISABLED;
	configuration.OPTION.transmissionPower = POWER_22;

	configuration.TRANSMISSION_MODE.enableRSSI = RSSI_DISABLED;
	configuration.TRANSMISSION_MODE.fixedTransmission = FT_FIXED_TRANSMISSION;
	configuration.TRANSMISSION_MODE.enableRepeater = REPEATER_DISABLED;
	configuration.TRANSMISSION_MODE.enableLBT = LBT_DISABLED;
	configuration.TRANSMISSION_MODE.WORTransceiverControl = WOR_TRANSMITTER;
	configuration.TRANSMISSION_MODE.WORPeriod = WOR_2000_011;


  // Send message
  ResponseStatus rs = e22ttl100.sendConfigurationMessage(0, DESTINATION_ADDL, 23, &configuration);
  // Check If there is some problem of successfully send
  Serial.println(rs.getResponseDescription());

Thanks

Now you have all information to do your work, but I think It’s important to show some real examples to understand better all the possibilities.

  1. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: settings and basic usage
  2. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: library
  3. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: configuration
  4. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: fixed transmission, broadcast, monitor, and RSSI
  5. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: power-saving and sending structured data
  6. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: repeater mode and remote settings
  7. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: WOR microcontroller and Arduino shield
  8. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: WOR microcontroller and WeMos D1 shield
  9. Ebyte LoRa E22 device for Arduino, esp32 or esp8266: WOR microcontroller and esp32 dev v1 shield

Shield and PCB


Spread the love
Exit mobile version